CSE525 Lec1: Recursion

Debajyoti Bera (M21) <u>https://sites.google.com/a/iiitd.ac.in/cse525-m19</u>

Insertion Sort

26 54 26 54	4 93	17	77	31	44	55	20	inserted 26
		17	77	1			L	1
	T			31	44	55	20	inserted 93
17 26	6 54	93	77	31	44	55	20	inserted 17
17 26	6 54	77	93	31	44	55	20	inserted 77
17 26	6 31	54	77	93	44	55	20	inserted 31
17 26	6 31	44	54	77	93	55	20	inserted 44
17 20	6 31	44	54	55	77	93	20	inserted 55
17 20	0 26	31	44	54	55	77	93	inserted 20

Fix(i) : Assuming A[1i- A[1i]. $F_{ix}(5)$ where A?	[34,4,2,5] ?
Fix(5) shenAz JS(i) : Sorts A[1i] usi	$\frac{1}{3}, \frac{3}{4}, \frac{5}{2}$
ALI InsertionSort(): $I_{S(n)}$ Is(i) IS(2)	JS(i-1) [JS(i)
IS(i): Rohum if i=0 or i>n	IS(N)
(IS(i): Pohum if i=0 or i>n > Receiver (i) Fix (i=1) LS(i=1)	1,, i-of may be
(IS(i=1))	$A= \left[3, 4, 1, 2, 5, 7 \right]$
$T_{S}(i):$ or return if $i \leq 1$	Trie
$J_{S}(i-i) // A [1-i-i]$ $J_{S}(i-i) // A [1-i-i-i]$ with be Fix(i) sorted	$\rightarrow \left(\begin{bmatrix} 1, 2, 3, 4, 5, 7 \end{bmatrix} \right)$
Insertion Sort(): Is(n))

Proof of Correctness

Fix(i) : Assuming A[1...i-1] is
sorted, sort A[1...i].

IS(i):

<u>ړ</u>. Return if 2· • ን د Fix <u>թություն</u> (<u>թություն</u>)

Claim: IS(i) sorts A[1...i] in place. Proof by induction on i. Base case: When i=0, the claim is trivially true since

- A[1...0] is an empty array.
- IS(0) returns immediately

Induction hypothesis: Assume that IS(i-1) sorts A[1...(i-1)] in place.

i=0 Induction statement: To prove that IS(i) sortsIS(i-1) A[1...i] in place, for i > 0.

IS(i) first calls IS(,,i-1). By IH, after this, A[1...(i-1)] is sorted.

IS(i) then calls Fix(i() which inserts A[i] inside the already sorted array A[1...(i-1)] in its right place in the sorted order. So after this call A[1...i] will be sorted.

Analysis of Insertion Sort

Assume that Fix(j) takes O(j) steps.

Let T(k) denote the time complexity of IS(k).

Write a recursive expression for T(k).

$$\Gamma(K) = \tau(K-1) + O(K) = O(K^{2})$$

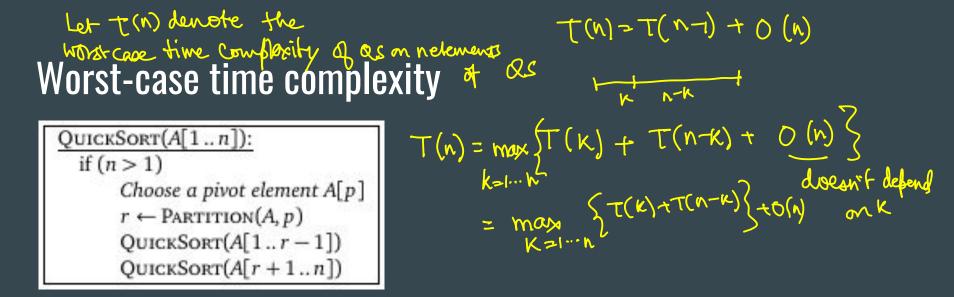
Exercise

Fix(j) : Assume A[1...j] is sorted, except its last element. Place the min element of A[1...j] in the right place inside A[1...j].

Write a recursive algorithm for FixPosLast(A). Fig().

(Optional) Prove that your algorithm is correct using induction.

Can you speed up Fix(j) ? Either asymptotically or according to clock time.


Is this correct?
IS(i):
 Return if i=0
 IS(i-1)
 FixPosLast(i)

Recursive Sort by Dividing at the Middle

- 1. Pre-process array.
- 2. Assume <u>left-half</u> is correctly sorted.
- 3. Assume **<u>right-half</u>** is correctly sorted.
- 4. Construct sorted version of the entire array.

Merge-sort
1. ? no pre-processing
2,3.
$$\checkmark$$
 Accurrence for
4. ? Merge ()
Time-complexity ? $T(n) = 2T(n/2)$
 $+O(n)$

What is the recurrence for T(n) in terms of r?

What is the recurrence for the worst-case expression for T(n)?